Wednesday, April 18, 2018 - 12:00pm
Add to Calendar
HUCE Seminar Room 440, 26 Oxford St., Cambridge

Harvard Climate Seminar: Sukyoung Lee

Sukyoung Lee, Professor of Meteorology, Department of Meteorology and Atmospheric Science, Penn State University, will give a talk on "Tropically Excited Arctic warMing (TEAM) Mechanism: A Theory Based on a General Circulation Perspective."

Abstract: Records of past climates show a wide range of values of the equator-to-pole temperature gradient, with an apparent universal relationship between the temperature gradient and the global-mean temperature: relative to a reference climate, if the global-mean temperature is higher (lower), the greatest warming (cooling) occurs at polar regions. Understanding this equator-to-pole temperature gradient is fundamental to climate and the general circulation. Here, a general-circulation-based theory for polar amplification is presented. Recognizing the fact that most of the zonal available potential energy (ZAPE) in the atmosphere is untapped, this theory states that La-Niña-like tropical heating can help tap ZAPE and warm the Arctic by exciting poleward and upward propagating Rossby waves that reinforce the climatological stationary waves.

This theory is supported by observation-based data and idealized model experiments. The theory is also supported by the ongoing multi-decadal trend in the convective precipitation which shows a steady increase over the western tropical Pacific. In contrast, most climate models predict an El-Niño-like response to greenhouse-gas warming. Discrepancies between climate models and the observations are often attributed to internal variability. However, evidence will be presented wherein the models are predicting an El-Niño-like response to greenhouse-gas warming at least in part because the convective parameterizations in climate models overpredict warming in the tropical upper troposphere. The climate models also predict Arctic warming, but the models’ Arctic warming is impacted by the warm bias in the models’ tropics.

It is widely accepted that the primary mechanism for Arctic amplification is ice-albedo feedback and resultant sea-ice decline, but observations lend little support to this mechanism. Instead, energy flux from lower latitudes by Rossby waves plays the key role in warming the Arctic and melting the sea ice.

Speaker bio: Sukyoung Lee is a professor of meteorology at the Pennsylvania State University. She is a Fellow of American Meteorological Society and the John T. Ryan Jr. Faculty Fellow in the College of Earth and Mineral Sciences at Penn State. She received her PhD in Atmospheric and Oceanic Sciences at Princeton University and enrolled as a postdoctoral fellow at NCAR’s Advanced Study Program before joining the faculty in the Department of Meteorology at Penn State. Most of her past research activities have been driven by her interests in the general circulation of the atmosphere, ocean, and planetary atmospheres. Her research topics include mid-latitude storm tracks, baroclinic wave packets, Hadley Circulation, Brewer-Dobson Circulation, multiple zonal jets (Jovian atmosphere and Southern Ocean), tropopause dynamics, Walker Circulation, tidally locked planetary atmospheres, ocean mixed layer/mode water, and equable climates/Arctic amplification. She is currently serving as an editor of Journal of the Atmospheric Sciences and a member of NOAA Earth System Science and Modeling Council.

Contact Name: 

Sabinna Cappo

Research Areas: 

Harvard University
Center for the Environment

Address: 26 Oxford Street, 4th Floor, Cambridge
Phone: (617) 495-0368

Connect with us

Follow HUCE to stay updated on energy and the environment at Harvard and beyond.

Subscribe to our mailing list